metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zhao-Peng Deng, Shan Gao,* Li-Hua Huo and Hui Zhao

Laboratory of Functional Materials, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail: shangao67@yahoo.com

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.002 \text{ Å}$ R factor = 0.026 wR factor = 0.074 Data-to-parameter ratio = 15.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Diaquabis(4-formylbenzoato-*kO*)zinc(II) monohydrate

In the title complex, $[Zn(C_8H_5O_3)_2(H_2O)_2]$ ·H₂O, the Zn atom exhibits a distorted tetrahedral coordination environment defined by two carboxylate O atoms and two water molecules. The coordinated and uncoordinated water molecules participate in a three-dimensional supramolecular network of O– H···O hydrogen bonds.

Comment

This report is part of a continuation of our studies on metal complexes of 4-formylbenzoic acid. In our previous work, we reported two metal complexes of 4-formylbenzoic acid with nickel(II) (Deng *et al.*, 2006*a*) and copper(II) (Deng *et al.*, 2006*b*), in which the 4-formylbenzoate ligand coordinated to the metal centers in a monodentate mode. Using zinc in a similar reaction leads to the formation of the title compound, (I), a monohydrated diaqua complex. As depicted in Fig. 1, the Zn^{II} atom exists in a distorted tetrahedral geometry. There is a long $Zn1 \cdots O2$ contact [2.5976 (13) Å]; if this were considered to be a bond, then an extremely acute O2–Zn1–O3 bond angle of 55.43 (6)° would arise.

We can see from Fig. 2 that all the adjacent mononuclear units parallel to the *a* axis are linked by hydrogen bonds formed by atoms O1W and O2W, giving rise to a onedimensional chain, with a Zn···Zn separation of 7.9390 (16) Å. In addition, O1W forms another kind of hydrogen bond with O1, which connects these infinite hydrogen-bonded chains to produce a two-dimensional architecture in the crystallographic *ac* plane; the shortest distance between the Zn atoms of adjacent chains is 11.1762 (17) Å. The layers are further linked into a threedimensional supramolecular network *via* hydrogen-bonding interactions between O1W and O2 (Table 2).

Experimental

© 2006 International Union of Crystallography All rights reserved Zinc diacetate dihydrate (0.11 g, 0.5 mmol) was added to an aqueous solution (15 ml) of 4-formylbenzoic acid (0.15 g, 1 mmol) that had

Received 27 October 2006 Accepted 20 November 2006 earlier been treated with 0.1 *M* sodium hydroxide to attain a pH of 5. The solution was allowed to evaporate at room temperature and colorless prismatic crystals of (I) were separated from the filtered solution after several days. Analysis calculated for $C_{16}H_{16}O_9Zn$: C 46.01, H 3.86%; found: C 46.06, H 3.83%.

Z = 2

 $D_x = 1.628 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation

 $\mu = 1.49 \text{ mm}^{-1}$

T = 295 (2) K

 $R_{\rm int}=0.026$

 $\theta_{\rm max} = 27.5^\circ$

Prism, colorless

 $0.36 \times 0.24 \times 0.18 \; \text{mm}$

7940 measured reflections

1959 independent reflections

 $w = 1/[\sigma^2(F_o^2) + (0.0453P)^2$

+ 0.1686*P*] where $P = (F_0^2 + 2F_c^2)/3$

 $\Delta \rho_{\rm max} = 0.31 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

 $(\Delta/\sigma)_{\rm max} = 0.001$

1820 reflections with $I > 2\sigma(I)$

Crystal data

$$\begin{split} & [Zn(C_8H_5O_3)_2(H_2O)_2] \cdot H_2O \\ & M_r = 417.66 \\ & \text{Monoclinic, } P2/c \\ & a = 7.9390 \ (16) \text{ Å} \\ & b = 5.7474 \ (11) \text{ Å} \\ & c = 18.736 \ (4) \text{ Å} \\ & \beta = 94.69 \ (3)^\circ \\ & V = 852.0 \ (3) \text{ Å}^3 \end{split}$$

Data collection

Rigaku R-AXIS RAPID diffractometer ω scans Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\min} = 0.646, T_{\max} = 0.768$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.074$ S = 1.051959 reflections 128 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters (Å, °).

Zn1–O3 Zn1–O2W	1.9676 (13) 2.0076 (12)		
$\begin{array}{c} O3^{i} - Zn1 - O3 \\ O3 - Zn1 - O2W^{i} \end{array}$	141.88 (8) 106.94 (6)	$\begin{array}{c} O3 - Zn1 - O2W \\ O2W^{i} - Zn1 - O2W \end{array}$	97.93 (6) 97.79 (7)

Symmetry code: (i) $-x + 1, y, -z + \frac{1}{2}$.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} O1W-H1W1\cdots O1^{ii}\\ O2W-H2W1\cdots O1W\\ O2W-H2W2\cdots O2^{iii} \end{array}$	0.841 (6)	1.917 (6)	2.7319 (15)	163.0 (16)
	0.839 (9)	1.867 (9)	2.7047 (15)	177 (2)
	0.845 (9)	1.806 (10)	2.6460 (18)	172 (2)

Symmetry codes: (ii) -x + 1, -y, -z + 1; (iii) $-x + 1, y + 1, -z + \frac{1}{2}$.

The carbon-bound H atoms were placed in calculated positions, with C–H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$, and were refined in the riding-model approximation. The H atoms of the water molecules were located in a difference map and refined with O–H and H···H distance restraints of 0.85 (1) and 1.39 (1) Å, respectively, and with $U_{iso}(H) = 1.5U_{eq}(O)$.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick,

Figure 1

The molecular structure of the title complex showing the atomnumbering scheme and displacement ellipsoids drawn at the 30% probability level. The dashed line indicates a hydrogen bond. [Symmetry code: (i) -x + 1, y, $-z + \frac{1}{2}$.]

Figure 2

The three-dimensional supramolecular structure of (I), with the O– $H \cdots O$ hydrogen bonds denoted by dashed lines. H atoms not involved in hydrogen bonding have been omitted.

1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

The authors thank the Heilongjiang Province Natural Science Foundation (No. B200501), the Scientific Fund for Remarkable Teachers of Heilongjiang Province (No. 1054 G036) and Heilongjiang University for supporting this study.

References

Deng, Z.-P., Gao, S. & Ng, S. W. (2006*a*). *Acta Cryst.* E62, m2904–m2905. Deng, Z.-P., Gao, S. & Ng, S. W. (2006*b*). *Acta Cryst.* E62, m2906–m2907. Higashi, T. (1995). *ABSCOR*. Rigaku Corporation, Tokyo, Japan. Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.